Novel Neighbor Selection Method to Improve Data Sparsity Problem in Collaborative Filtering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM

Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...

متن کامل

An Effective Threshold-Based Neighbor Selection in Collaborative Filtering

In this paper we present a recommender system using an effective threshold-based neighbor selection in collaborative filtering. The proposed method uses the substitute neighbors of the test customer who may have an unusual preferences or who are the first rater. The experimental results show that the recommender systems using the proposed method find the proper neighbors and give a good predict...

متن کامل

An Improved Neighbor Selection Algorithm in Collaborative Filtering

Nowadays, customers spend much time and effort in finding the best suitable goods since more and more information is placed online. To save their time and effort in searching the goods they want, a customized recommender system is required. In this paper we present an improved neighbor selection algorithm that exploits a graph approach. The graph approach allows us to exploit the transitivity o...

متن کامل

The Effect of Neighbor Selection in Collaborative Filtering Systems

Collaborative filtering-based recommdender systems can aid online users to choose items of their preference by recommending items based on the preference history of other similar users. Similarity calculation plays a critical role in this type of systems, since the rating history of other users with higher similarity is given higher priority in recommendations. This study investigates qualifyin...

متن کامل

Solving the Sparsity Problem: Collaborative Filtering via Indirect Similarities

Collaborative filtering is an important technique of information filtering, commonly used to predict the interest of a user for a new item. In collaborative filtering systems, this prediction is made based on user-item preference data involving similar users or items. When the data is sparse, however, direct similarity measures between users or items provide little information that can be used ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Distributed Sensor Networks

سال: 2013

ISSN: 1550-1477,1550-1477

DOI: 10.1155/2013/847965